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Abstract 

This study introduces a novel Fully Connected Variational Autoencoder (VICPute) to effectively address the challenges of missing data 

imputation and classification of Parkinson’s disease (PD) using the Parkinson’s Progression Markers Initiative (PPMI) dataset. The 

VICPute model, which integrates an encoder with dual decoders, refines imputation and classification processes through a pioneering 

architecture that employs computational blocks for enhanced feature extraction. This model distinguishes between healthy individuals 

and those with PD and robustly handles significant missing data issues within a complex dataset that includes 24,182 samples from 2,427 

patients. Our approach optimizes training by applying advanced preprocessing techniques such as Multivariate Imputation by Chained 

Equations (MICE) and generating artificial missing data. The model’s efficiency is underscored by a high f1-score of 0.87 in testing, 

highlighting the potential of deep learning techniques to enhance diagnostic accuracy and contribute to the broader understanding of PD 

progression. 
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Introduction 
Parkinsons Disease (PD) represents one of the most common neurodegenerative disorders, affecting mil- lions worldwide. 

Characterized by the progressive loss of motor control, PD is accompanied by tremors, rigidity, and bradykinesia, alongside a 

spectrum of non-motor symptoms such as cognitive impairments and emotional disturbances [1, 2, 3, 4]. The etiology of PD 

involves the degeneration of dopamine-producing neurons in the brain, yet the precise mechanisms and biomarkers associated with 

disease progression remain under intensive study [5]. The diagnosis of PD has been enhanced through advanced imaging 

techniques and biomarkers [6]. Since the early 2000s, the focus has shifted towards finding non-invasive methods for early 

diagnosis [7, 8]. Mirelman et al. (2013) demonstrated how gait analysis could predict PD progression [9]. Later, the application of 

biomarkers in cerebrospinal fluid (CSF) and blood, as reviewed by Heinzel et al. (2019), provided new pathways for early-stage PD 

diagnosis [10, 11]. 
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Clinical data, encompassing neuroimaging, physiological, and genetic information, has been central to understanding and 

diagnosing PD [12, 13, 14, 15, 16, 17]. The Parkinsons Progression Markers Initiative (PPMI), launched in 2010, has been pivotal 

in collecting and analyzing such data [18]. Studies utilizing this rich dataset have explored the multifaceted nature of PD, 

examining everything from motor symptoms to cognitive decline [19]. Recent trends include integrating clinical data with artificial 

intelligence to predict disease progression and response to treatment. Furthermore, questionnaires have been instrumental in 

capturing patient-reported outcomes, which are crucial for clinical trials and routine management of PD. The non-motor symptoms 

questionnaire (NMSQuest), developed by Chaudhuri et al. (2006), has been widely used to assess the diverse symptoms of PD that 

are not related to motor function [20]. Recent research focuses on combining questionnaire data with sensor data to provide a more 

comprehensive assessment of patient health, thereby enhancing personalized treatment plans. 

Machine learning methods are vital for advancing the understanding and treatment of neurodegenerative diseases by enabling the 

identification of patterns and predictors in vast datasets that are otherwise unmanageable by traditional analytical approaches [21]. 

Machine Learning (ML) techniques have greatly enhanced Parkinson’s Disease (PD) diagnosis and monitoring, adeptly managing 

large datasets and effectively performing tasks like disease stage classification [22] and missing data imputation in longitudinal 

studies. Various ML methods, from traditional classifiers such as SVM and Random Forests to advanced deep learn- ing 

architectures, have been used to identify complex patterns undetectable through human analysis, thereby improving prediction 

accuracy. Notable research includes Sakar et al. (2019), who evaluated the efficacy of different ML techniques in PD classification, 

and Xiong and Lu (2020), who demonstrated the capability of deep learning in analyzing vocal data for PD detection [23, 24, 25]. 

Additionally, Mohammed et al. (2021) explored the use of variational autoencoders for imputing missing data, showcasing the 

versatility of ML in medical data analysis [16]. These studies lay a robust groundwork for further research into the use of ML in 

diagnosing neurodegenerative diseases, addressing both the inherent challenges and emerging opportunities. Our research aims to 

develop a Fully Connected Variational Denoising Autoencoder (FCVDAE) that ad- dresses the dual challenges of imputing missing 

data and accurately classifying individuals as either healthy or with Parkinson’s Disease (PD). Utilizing the comprehensive dataset 

provided by the Parkinson’s Progression Markers Initiative (PPMI), which encompasses a rich array of clinical [26, 27], behavioral, 

and biological data, our model employs a novel architecture inspired by Variational Autoencoder (VAE) principles. VAE model 

includes an advanced encoder-decoder setup with computational blocks that feature skip connections to enhance gradient flow and 

learning efficiency. By integrating robust data imputation with precise diagnostic classification, our approach improves the 

dataset’s utility for advanced analyses deepening our understanding of PD, thereby facilitating the development of targeted 

therapeutic strategies. This innovative model architecture, equipped to handle the complexities and uncertainties inherent in clinical 

data, is trained using a composite loss function that optimizes imputation accuracy, classification performance, and conformity to 

the latent space distribution, ultimately paving the way for significant advancements in the management and study of Parkinsons 

Disease. 

Preliminaries 

In this section, we will describe the preliminary aspects of the model. The concept of a multilayer perceptron (MLP) model was first 

introduced in [28], which was created to handle nonlinearity in a model and is shown in the equation 1: 

Z = φ (θL · φ (θL−1 · . . . · φ (θ1 · α + β1) + β2) + . . . + βL) ,  (1) 

where θi and βi are the weight and bias matrices for layer i, respectively. φ is an activation function, α is the input matrix, and Z is 

the output matrix. 

http://www.tsijournals.com/
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In our work, we also utilize residual blocks introduced in [29]. As described in the original article, residual blocks improve model 

performance by allowing the input to bypass layers where no significant information is extracted. This mechanism ensures that the 

input is still available for subsequent layers. The formula for a residual block is given in equation 2: 

τ = α + θ(α, ωi),   (2) 

Where τ is the output, α is the input, and ωi represents the weights associated with the layers within the residual block. 

Another important concept is the Autoencoder (AE) []. The goal of an autoencoder, as shown in equation 3, is to reduce the 

dimensionality of the input and compress it into a latent space, which is a representation of the input. The latent space is then used 

to reconstruct the input as its original size. This helps to capture powerful features with a much smaller dimensionality. 

µ = θ(α) 

α̂ = γ(µ),  (3) 

Here, α is the input, θ is the encoder function, µ is the latent space, γ is the decoder function, and α̂  is the reconstructed input. The 

closer α̂  is to α, the richer the features in µ will be in terms of information extracted from the input. 

Methodology 

The complete process is illustrated in 1, which includes preprocessing, data preparation, and a presented model. In the following, 

each part of the process will be described in detail and finally, all results will be presented. 

Figure 1. The general schema of the presented process: Data Preprocessing: Applying an oversampling for handling imbalanced dataset, 

Mask Creation: Creating a binary mask to represent known value elements, Primary Imputation: Imputing unknown values using a classic 

imputation method, Scaler: Scaling (e.g., normalization) as preprocessing, and VICPute: Applying the main imputation model. 

1. Database Description

We have used the Parkinson’s Progression Markers Initiative (PPMI) dataset for our purpose. This dataset contains various data 

collected from patients, including tables and images. The objective is to identify biomarkers that indicate disease progression using 

MRI, biological samples, and clinical and behavioral evaluations. Our work focuses on the questionnaire database, which includes 

different sections such as MDS-UPDRS (all parts), Physical Activity Scale for the Elderly - Household Activity, Modified Schwab 

http://www.tsijournals.com/
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and England ADL, SCOPA-AUT, Clinical Cognitive Categorization, Geriatric Depression Scale (Short), Questionnaire for 

Impulsive-Compulsive Disorders (QUIP), State-Trait Anxiety Inventory, Benton Judgment of Line Orientation, Hopkins Verbal 

Learning Test, Letter-Number Sequencing (PD), Montreal Cognitive Assessment (MoCA), Semantic Fluency, Symbol Digit 

Modalities Test, Epworth Sleepiness Scale, and Features of REM Behavior Disorder. Furthermore, these tests have been performed 

over different periods. Therefore, it is necessary to exclude certain tests to maintain a logical number of missing values during the 

merging process. Some features were disregarded due to minimal overlap caused by different time steps. For merging, we included 

patients tested more than three times. In addition, time steps start from baseline BL (the first time they were tested) to V20/R20 (20 

months after baseline). Although not all tests are available at all time steps (actual missing values), we consider them to make the 

model more robust. We had 24,182 samples from 2,427 patients available to start this investigation. The distribution of samples 

across time steps is shown in Figure 2. 

According to Figure 2, the time steps include various types, such as V, BL, SC R, ST, U, and PW. BL refers to the baseline 

measurement taken when a participant is officially enrolled in the PPMI study. In some instances, SC may have preceded this, a 

screening measurement conducted to assess the participant’s eligibility and gather static data, like demographics, typically around 

60 days before the baseline. The V# indicate subsequent study visits during which tests were conducted and measurements 

recorded, while the R# represent remotely recorded measurements. Additionally, U# refers to unscheduled visits. The number of 

patients varies at different follow-up times. During certain time intervals, such as V01, V03, and V17, our participant count is 

notably low. Furthermore, we have a substantial number of patients in R01. 

Figure 2. The Number of patients in different time steps 

Figure 3 presents the histogram depicting the distribution of patients’ ages. The x-axis indicates the ranges from 30 to 90 and the y-

http://www.tsijournals.com/
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axis represents the frequency, peaking at just under 1000 participants. The youngest and the oldest participants are 29 and 95, 

respectively. The mean and standard deviation of the age distribution are approximately 64.9 and 10.3, respectively. The 

distribution is roughly symmetric, forming a bell-shaped curve centered around the 65 to 70 age range. The number of participants 

decreases steadily on both sides of this peak, indicating fewer participants in the younger and older age groups. 

The assessment of the patient’s condition is essential for the classification task. We consider binary classification that groups 

individuals into two categories: having Parkinson’s disease (represented as ”Parkinson’s Disease”) and normal 

individuals (described as ”Healthy”). Figure 4-5, it has been shown that the proportion of people with Parkinson’s disease is 

much higher than healthy people. According to the data, the proportion of PDs is approximately three times higher than 

normal, leading to biased model results. There are approximately 4,000 confirmed cases of the disease, with over 12,000 

individuals currently affected. Also, Table 1 compares the number of individuals with Parkinson’s disease and those who are 

healthy, categorized by gender. There are more females with Parkinson’s disease (7601) compared to males (4751). Conversely, 

the number of healthy individuals shows a different pattern, with males (2269) outnumbering females (1383). This suggests 

a notable difference in gender distribution between the two groups, with Parkinsons disease having more female 

participants, while the healthy group has more male participants. Hence, a gender disparity in the prevalence of Parkinson’s 

disease is more common in females, while the healthy population has a higher proportion of males. 

http://www.tsijournals.com/
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Table 2 presents the mean and standard deviation of the ages of individuals diagnosed with Parkinson’s Disease compared to 

healthy individuals. The mean age for both groups is nearly the same, with Parkinson’s Disease patients having a mean age of 64.67 

years and healthy individuals having a mean age of 64.66 years. However, the standard deviation, which measures the variability or 

spread of ages around the mean, differs between the two groups. The standard deviation for Parkinson’s Disease patients is 9.93 

years, indicating a tighter clustering of ages around the mean compared to the healthy group, with a standard deviation of 11.55 

years. This difference in standard deviation suggests that the ages of healthy individuals are more widely spread out than those of 

individuals with Parkinson’s Disease. 

Table 1. Comparison of Gender Distribution Between Parkinson’s Disease and Healthy Individuals 

Gender Female Male 

Parkinson’s Disease 7601 4751 

Healthy 1383 2269 

Table 2. Comparison of Age Distribution Between Parkinson’s Disease and Healthy Individuals 

Age mean standard deviation 

Parkinson’s Disease 64.67 9.93 

Healthy 64.66 11.55 

2. Data Preparation

We implemented an intelligent oversampling technique to tackle the class imbalance in our dataset as the first step of data 

preprocessing. Thereafter, we proceeded with missing value imputation. Missing value imputation is done by Multivariate 

Imputation by Chained-Equations (MICE). The MICE algorithm is a robust statistical method that addresses missing values by 

repeatedly estimating values based on the relation- ships among variables. This process reveals hidden patterns within datasets and 

restores their completeness, enabling through analysis [30]. After missing value imputation, some values were selected randomly to 

make artificial missing values. According to Snchez-Morales et al. (2017), replacing known values with artificial missing values 

can improve model performance [31]. Meanwhile, it lets the model get an overview of the dataset and learn model distribution. In 

the next step, we have generated masks that delineate both artificial and genuine null values. Then, all missing values were imputed 

using imputation techniques. Additionally, a min-max scaler was applied to aid in better training and convergence of the model. 

3. Model Architecture

In this study, we aim to classify input data into two categories Parkinson’s disease and healthy while imputing missing values. This 

dual task requires the model to differentiate between the two groups and to learn the underlying data distribution for effective 

imputation. We developed a new deep-learning model that can handle imputation and classification tasks in a single end-to-end 

training framework. 

http://www.tsijournals.com/
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Figure 5. Schema of Fully Connected Variational AutoEncoder 

Our newly introduced architecture, termed Variational AutoEncoder-based Imputation and Classification (VICPute), leverages a 

Variational AutoEncoder (VAE) as its foundational structure [32, 33, 34, 35]. As depicted in 5, the VICPute model incorporates an 

encoder and two specialized components: an Imputer and a Classifier. The Imputer and Classifier are equipped with their decoders, 

which share the same architectural framework, and a fully connected layer to fulfill their respective functions. The encoder and 

decoders are constructed using computational units referred to as Comp Blocks, details of which are further elucidated later in the 

text. This approach ensures that our model not only classifies data with high accuracy but also effectively manages missing data 

through imputation, thereby enhancing the overall reliability and performance of the system. 

Figure 5 represents the schema of VICPute, designed for handling missing values and classification. The input image X undergoes 

encoding through qφ(z | x), where the encoder learns to produce a distribution over the latent space characterized by its mean µz|x 

and standard deviation Σz|x. These parameters are used to sample the latent variable z. The latent variable then passes through two 

decoders pθ(x | z), which attempts to reconstruct the input size X̂  through a series of fully connected layers. Additionally, the latent 

variable z interacts with another decoder to generate the number of classes C. The overall loss function combines imputation loss, 

KL divergence, and binary cross-entropy, ensuring the model imputes missing data, maintains a regularized latent space, and 

performs classification. According to 3.3.5, the loss function is defined to consider the errors of both classification and imputation. 

The result would be a model robust to missing values and able to classify each sample. In the following sections, we go through the 

details of the model. 

http://www.tsijournals.com/
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3.1. Computational Block 

Inspired by the ResNet model [29], our computational block (CompBlock(d, h)) uses skip connections. The architecture of a 

CompBlock [36] with input size d and hidden size h is shown in Figure 6. Consider the input tensor with shape (b, d), where b is 

the batch size and d is the input dimension. It will go through a dropout layer to prevent overfitting. Then, the result will be given to 

a linear layer with a Relu activation function to extract features. This layer transforms the input to the hidden dimension h, where h 

is the hidden size of the CompBlock. The result will be concatenated with the input. This skip connection ensures that even if the 

feature extractor part of the CompBlock cannot learn richer information than the input, the input information will still be available 

for the next layers. 

Figure 6. Architecture of Computational Block CompBlock 

3.2. Encoder 

The encoder plays an essential role in the architecture of VAE models, as it is responsible for calculating the latent space 

representation used by the decoders in the Imputer and Classifier components of the model. This process directly impacts the 

performance and the quality of the generated outputs. The encoder in our specified VAE comprises seven stacked CompBlocks, 

each with the same hidden size. 

After the data has passed through the final CompBlock, it reaches two separate dense layers. These layers are designed to calculate 

the mean (µ) and the logarithm of the variance (log(σ2)) of the latent space distribution. The mean and log variance serve as integral 

components within the variational segment of the model. Figure 7 represents the parameters of the Gaussian distribution that 

approximates the actual data distribution in the latent space. 

Calculation the mean and log variance is integral to the model’s ability to learn a smooth and continuous latent space that 

http://www.tsijournals.com/
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encourages the generation of new, coherent data samples. By training the model to output a mean and log variance, the VAE 

ensures that the latent variables follow a distribution close to a standard normal distribution (N (0, I)). Closing to a standard normal 

distribution is achieved through the Kullback Leibler (KL) divergence term in the loss function, which regularizes the learned 

distribution to be as close as possible to the prior (a standard Gaussian distribution). 

Once the mean and log variance are obtained, the reparameterization trick allows for backpropagation through the stochastic layer. 

The reparameterization trick involves sampling from a standard normal distribution and then shifting and scaling this sample using 

the learned mean and variance. Mathematically, this can be expressed as: 

z = µ + σ 0 E,  (4) 

where σ is the exponential of the log variance, and E is a sample from the standard normal distribution. This operation ensures that 

the sampling process is differentiable and allows gradients to flow through the network, enabling effective model training. 

By parameterizing the latent space in this way, the VAE can produce a variety of meaningful latent representations that are input 

into the decoder and classifier. This parametrization enables the model to reconstruct the input data accurately and to classify the 

data effectively. The encoder’s design and the variational component’s precise handling of the mean and log variance are thus 

fundamental to the overall performance and robustness of the VAE. 

3.3. Imputer 

The imputer component of our model employs a decoder to impute missing values by effectively recon- structing the input data 

from its latent space representation, as depicted in Figure 7. This process enables the restoration of incomplete data, thereby 

facilitating more accurate analysis and classification within the model framework. Like the encoder, the decoder employs seven 

CompBlocks with the same hidden size, ensuring consistency in architecture and enabling the model to capture and utilize complex 

patterns in the data. Following the final CompBlock, the Imputer employs a single dense layer to reconstruct the input matrix. This 

layer is designed to map the latent representation back to the original input size, ensuring that the output is a faithful reconstruction 

of the original data, completed with imputed missing values. The MLP achieves this by applying a series of learned transformations 

that decode the compact, abstract features encoded in the latent space into detailed, high-resolution data. The end goal is to produce 

an output matrix that matches the dimensions of the input matrix, thus providing a complete dataset where missing values have 

been imputed. 

http://www.tsijournals.com/
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Figure 7. Main model architecture 

3.4. Classifier 

As shown in Figure 7, the classifier component employs the same computational blocks as the imputer. It comprises seven 

CompBlocks with the exact hidden sizes, each contributing to the hierarchical representations of features. Given the nature of the 

task, which entails binary classification, the classifier’s architecture is finalized with a single neuron with a sigmoid activation 

function suited for transforming the output into probabilities. The other branch of the decoder reconstructs the input size tensor 

which contains implemented values for missing data. Also, the result of encoder is devided Expanding on the design rationale, the 

choice of CompBlocks, characterized by their ability to extract and abstract features at various levels of granularity, reflects a 

deliberate effort to capture the nuanced information in the data. 

3.5. Loss Function 

As described in previous parts, the goals are to impute missing values, classify the dataset, and close the distribution of latent space 

to normal distribution. Thus, a combined loss function is defined in equation5. 

Loss = LImputation + LKLD + LBCE.  (5) 

The equation 5 contains three parts for each goal. In the following, we go into detail about each of them. 

To compute the imputation loss, based on [36], the LImputation is defined as follows: 

http://www.tsijournals.com/
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where x(i) is the value of i-th feature of the j-th data point in the initial dataset (before preprocessing and adding artificial null 

values), and x(i) is the value of i-th feature of model output corresponding to that data point. Mmiss is a binary mask that identifies 

all real and artificial missing values, and Mdrop is a binary mask to determine artificial missing values, which have been dropped 

randomly in the preprocessing. Moreover, K and U are the total numbers of known and Unknown values, respectively. The first 

term in equation 6 calculates the reconstruction error on Known values. The second term measures the model error in imputing the 

artificial missing values by comparing them to their initial true value. According to equation 6, we consider two concepts to train 

the model. First, we apply the squared error loss function to the known parts of the dataset. Moreover, we train the model to learn 

the elements we artificially missed. Learning from these dropped values enables the model to handle actual missing values and 

increases the importance of the dropped values relative to the known values. Hence, we increase their effect by a factor of four 

compared to the known values. Finally, all values are normalized by K + U . 

The term LKLD in equation 5 refers to KullbackLeibler divergence (KLD) [33], which is computed by: 

 (7) 

KLD is used to find how different the latent space distribution to the normal distribution. In Variational Autoencoder (VAE) 

models, the KullbackLeibler divergence (KLD) measures how much the learned latent variables approximate a desired prior 

distribution, typically a standard normal distribution. The KLD term in the VAE objective function acts as a regularizer, penalizing 

deviations of the learned posterior distribution q(φ|θ) from the prior distribution p(φ). Moreover, the KLD term encourages the 

latent representations to follow the prior distribution, which generates new, realistic samples from the learned latent space. The term 

BCE in the equation 5 is the binary cross-entropy loss, which is defined as: 

(8) 

where τi and τˆi are the true label and the predicted class for i-th data point, P (τi) is the computed probability of the i-th data point to 

be in class τi and N is the total number of samples. The term BCE is used to compute the classification error. 

According to the equation 5, the summation of the terms explained in the equations 6 to 8 is computed as the overall loss to cover 

all aims and let the model learn deeply. 

3.6. Weight Initialization 

Due to the model’s learning enhancement and effects of randomly picking starting weights reduction, the different parts of the 

model were initialized specially. The encoder’s dense layer weights in CompsBlocks were initialized using a principal component 

analysis (PCA) method that captures most of the important information from the input data. This initialization guarantees that the 

model performs at least as well as a simpler version that uses PCA. The decoder’s and classifier’s dense layer weights in 

LImputation =
1

K + U
i=1

M∑
j=1

(
x̂
(i)
j − x

(i)
j ∗

(
1−M

(i)
miss,j

)2N∑( )

+4 ∗
M∑
j=1

(
x̂
(i)
j − x

(i)
j

)2
∗M (i)

drop,j

)
,

(6)

LKLD = DKL(q(φ|θ)‖p(φ)) =

∫
q(φ|θ) log

q(φ|θ)
p(φ)

dφ.

LBCE = − 1

N

N∑
i=1

[τi log τ̂i + (1− τi) log(1− τ̂i)] .
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CompsBlocks were initialized using linear regression to enhance their ability to recreate the desired output based on the input they 

receive. This initialization was done using the entire training dataset at once without creating any additional data variations. 

3.7. Metrics 

In this part, we demonstrate the metrics for evaluating imputation and classification. We used the f1-score for the classification part. 

The F1-score is calculated as the harmonic mean of precision and recall 9, effectively balancing the trade- off between the two 

metrics. The harmonic average emphasizes the lower values more significantly. If one metric is considerably lower than the other, 

the harmonic mean will reflect this imbalance more sharply than the simple average. The harmonic mean makes the F1-score 

particularly useful in situations where false positives and false negatives carry a critical cost, ensuring that the classifier performs 

well across both performance dimensions. The harmonic mean’s sensitivity to the lower value prevents misleadingly high f1-scores 

when one metric is disproportionately higher, providing a more accurate reflection of the model’s overall effectiveness. 

Precision is a metric used to evaluate the accuracy of a classifier in terms of its ability to identify positive instances correctly. It is 

defined as the ratio of true positive (TP) predictions to the total number of positive predictions made (true positives plus false 

positives, TP + FP) 10. Precision measures how many of all the instances that the classifier labeled as positive are actually positive. 

High precision indicates that the classifier has a low rate of false positives, meaning it is reliable when it predicts a positive 

outcome. 

Recall, also known as sensitivity or true positive rate, measures the classifier’s ability to identify all relevant positive instances in 

the dataset. It is calculated as the ratio of true positives (TP) to the total number of actual positive instances (true positives plus false 

negatives, TP + FN) 11. Recall measures how many instances are actually positive, and how many the classifier correctly identifies. 

High recall indicates that the classifier successfully captures most of the positive instances, minimizing the number of false 

negatives. 

Experiments 

In the experimental framework of our study, we partitioned the dataset into two main portions: 85% was used for training and the 

remaining 15% served as the test set. The training subset was further segregated into training and validation sets at a ratio of 80:20. 

To facilitate the loss function operations, masks corresponding to the training and validation sets were meticulously generated. To 

simulate conditions of data scarcity, 30% of the known values within the dataset were randomly omitted to create artificial missing 

values, for which specific masks were also crafted. The Multivariate Imputation by Chained Equations (MICE) algorithm was 

employed across all data subsets to address these artificially induced missing values. Additionally, data normalization was achieved 

using a Min-Max scaler applied across all subsets. The computational architecture was standardized using a hidden size of 10 for all 

CompBlocks, and the optimization of the model was conducted using the Adam optimizer with a learning rate set at 0.01, 

complemented by a cosine annealing scheduler to enhance the training dynamics. 

F1 Score =
2 · Precision · Recall

Precision + Recall
. (9)

Precision =
TP

TP + FP
.

(10)

Recall =
TP

TP + FN
. (11)
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Results and Discussion 

Effectiveness of the training phase is comprehensively illustrated in Figure 8, which tracks the model’s performance, and Figure 9, 

which shows the progression of binary cross-entropy loss for both the training and validation sets over various epochs. According 

to Figure 8, the model’s performance aligns closely with the binary cross-entropy loss trajectory. Initially, the training loss started 

at above 1.3 and declined to below 0.6, while the validation loss began just under 0.6 and eventually matched the training loss by 

the end of the training period. The observed differences between the model performance and the binary cross-entropy loss can be 

attributed to imputation loss. 

Figure 8. Model Performance 

Further depicted in Figure 9, the training dynamics for binary cross-entropy mirrored the overall model performance, completing 

within 18 epochs. Both training and validation losses experienced a substantial reduction initially before stabilizing. Specifically, 

training loss commenced at slightly over 0.706 and decreased to below 0.69, whereas validation loss started around 0.7 and 

converged with the training loss by the final epoch, indicating a consistent reduction across the training process. 

Performance metrics revealed an impressive F1-score of 92% for both the training and validation phases, with an F1-score of 87% 

on the test set, highlighting the model’s robustness and effectiveness in processing complex datasets. The subsequent part of our 

analysis involves comparing our model’s performance across different configurations, employing various scalers and imputation 

methods such as MICE and the KNN Imputer. The comparative analysis is detailed in Table 3. 

http://www.tsijournals.com/
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Figure 9. Binary cross entropy for classification part 

Table 3 provides a classification report that compares the F1 scores across different imputation techniques combined with various 

scaling methods. It assesses the performance of both the KNN Imputer and the MICE algorithm under Min-Max scaling and Z-

score scaling. The KNN Imputer registered an F1-score of 0.85 with Min-Max scaling and slightly improved to 0.86 with Z-score 

scaling. Similarly, the MICE algorithm achieved an F1-score of 0.85 with Min-Max scaling and marginally enhanced to 0.87 with 

Z-score scaling. These findings suggest that both imputation methods yield comparable results with Min-Max scaling; however, the

MICE algorithm slightly surpasses the KNN Imputer with Z-score scaling, indicating a potentially more robust performance by

MICE in managing missing data when combined with Z-score scaling.

Table 3. The comparison of the classification ability of the model via both KNN Imputer and MICE imputer. Moreover, shows the performance 

using min max scaler and z-score scaler 

Imputer method min max scaler z-score scaler

KNN Imputer 0.85 0.86 

MICE 0.85 0.87 

The results from various machine learning models employed for Parkinson’s disease classification on a clinical dataset are 

consolidated in Table 4. Our model, employing the Fuzzy Clustering Variational Autoencoder (VICPute) technique, demonstrated 

an accuracy of 87%. Comparatively, Asmae et al. [37], utilizing KNN, achieved a lower accuracy of 79.31%. Berus et al. [38] 

explored the use of both Artificial Neural Networks (ANN) and Support Vector Machines (SVM) with linear and RBF kernels, 

reporting accuracies ranging from 85% to 87.5%. Further, the study by Xiong and Lu [25] reported that models based on Logistic 
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Regression and SVM yielded an accuracy of 88%. In another instance, Masud et al. [39] achieved the highest accuracies in this 

review, 90% with Logistic Regression and 88% with SVM. Sakar et al. [23] used a combination of binary classifiersachieving 

accuracies between 84% and 86% across Linear Regression, SVM (Linear and RBF), and KNN. In contrast, Pahuja and 

Nagabhushan [24] reported varied results with accuracies of 72.81% for KNN, 88.21% for SVM (RBF), and 82.9% for SVM 

(Linear). Lastly, Mohammed et al. [40] noted accuracies of 86.2% for Logistic Regression and 85.6% for KNN, underscoring the 

variability and potential of these machine-learning techniques in clinical applications. 

Table 4. Comparison of ML Techniques for Parkinson’s disease classification on clinical dataset 

Study ML Technique Accuracy 

Our model VICPute 87% 

Asmae et al. [37] KNN 79.31% 

Berus et al. [38] ANN, SVM (Linear and RBF) 85-87.5%

Xiong and Lu [25] Logistic Regression, SVM 88% 

Masud et al. [39] Logistic Regression, SVM 88-90% 

Sakar et al. [23] Linear Regression, SVM (Linear and RBF), KNN 84-86% 

Pahuja and Nagabhushan [24] KNN, SVM (Linear and RBF) 72.81-88.21% 

Mohammed et al. [40] Logistic Regression, KNN 85.6-86.2% 

Ozturki and Unal [41] SVM, KNN 73.8-76.8% 

Sharanyaa et al. [42] Logistic Regression, KNN 80.03-90.2% 

Conclusion 

In this study, the overarching goal is twofold: firstly, to robustly impute missing entries in the dataset, thereby restoring its 

completeness and enhancing its utility for advanced analyses; secondly, to accurately classify participants into diagnostic categories 

based on the processed data. Our innovative approach harnesses the capabilities of the VICPute, integrating dual decoders with a 

shared encoder that facilitates both the imputation and classification processes. Leveraging a comprehensive dataset from the 

Parkinson’s Progression Markers Initiative, our model demonstrated robust capability in imputing missing data and classifying 

individuals as either healthy or with PD. This achievement was made possible through a sophisticated architecture that combines 

dual decoders with an advanced encoder, thereby improving the model’s accuracy in diagnostic classification and resilience in data 

imputation. Furthermore, our findings emphasize the potential of AI to enhance the utility and quality of clinical datasets, 

particularly in neurodegenerative diseases. Additionally, our study opens avenues for future research, including integrating diverse 

patient data types to enrich the analyses and overcome current limitations, such as lower classification performance and high 

computational demands. Moreover, this foundational study encourages further exploration into the application of deep learning in 

clinical settings, aiming to improve diagnostic tools and patient care strategies for Parkinson’s disease. 
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